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STABILITY ESTIMATES FOR SOLUTIONS OF A LINEAR NEUTRAL
STOCHASTIC EQUATION

IRADA A. DZHALLADOVA1

Abstract. A linear stochastic functional differential equation of neutral type is considered.

Sufficient conditions for the exponential stability are derived by using Lyapunov-Krasovskii

functionals of quadratic form with exponential factors. Upper bound estimates for the expo-

nential rate of decay are derived in terms on the equation’s coefficients.

Keywords: scalar linear stochastic differential delay equations of neutral type, asymptotic sta-

bility of zero solution, exponential stability and rate of decay, stochastic Lyapunov functionals.

AMS Subject Classification: 34K20, 34K40, 34K50, 34K6, 34K12.

1. Introduction

Theory and applications of functional differential equations form an important part of modern
nonlinear dynamics. Those equations are natural mathematical models for various real life
phenomena where the aftereffects are intrinsic features of their functioning. In recent years
functional differential equations have been used to model processes in diverse areas such as
population dynamics and ecology, physiology and medicine, economics and other natural sciences
[6, 8, 12, 16]. In many of the models the initial data and parameters are subject to random
perturbations, or the dynamical systems themselves represent stochastic processes. This leads
to consideration of stochastic functional differential equations [7, 10, 17].

One of the principal problems of the corresponding mathematical analysis of equations is a
comprehensive study of their global dynamics and related prediction of long term behaviors in
applied models. Of those the problem of stability of a particular solution plays a significant role.
The latter is typically reduced to the study of stability of the zero solution of a transformed
system. In cases of complex systems the study of local stability is usually approached by con-
sidering the corresponding system linearized about the zero solution. Therefore, the study of
stability of linear equations represents the first natural and important step in the analysis of
more complex nonlinear systems.

When applying the mathematical theory to real life problems the mere statement about
the stability in the system is hardly sufficient. In addition to the fact of the stability itself
it is of significant importance to obtain constructive and verifiable estimates on the rate of
convergence of solutions in time. One of the principal available tools in the related studies is
the second Lyapunov method. For the functional differential equations the method has been
developing in recent years in two main directions. The first one is the method of finite Lyapunov
functions with the additional assumption of Razhumikhin [18]. The second one is the method
of Lyapunov-Krasovskii functionals [14, 15]. For the stochastic functional differential equations
some aspects of these two directions of research have been developed in papers [1]-[4], [11, 13, 14]
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and [5, 9, 13, 14, 19, 20], respectively. In the present paper, by using the method of Lyapunov-
Krasovskii functionals, we derive sufficient conditions for stability together with the rate of
convergence to zero of solutions for a class of linear the stochastic functional differential equation
of neutral type.

2. Main results

Consider the following linear stochastic differential-difference equation of neutral type

d[x(t)− c x(t− τ)] = [a0x(t) + a1x(t− τ)] dt + [b0x(t) + b1x(t− τ)] dw(t), (1)

where x ∈ R, a0, a1, b0, b1, c are all real constants, τ > 0 is a constant delay, and w(t) is a
standard scalar Wiener process with

M{dw(t)} = 0, M{dw(t)2} = dt, M{dw(t1) dw(t2), t1 6= t2} = 0.

An Ft-measurable random process {x(t) ≡ x(t, ω)} is called a solution of equation (1) if it
satisfies with the probability one the following integral equation

x(t) = c x(t− τ) + [x(0)− cx(−τ)] +

t∫

0

[a0x(s) + a1x(s− τ)] ds +

+

t∫

0

[b0x(s) + b1x(s− τ)] dw(s), t ≥ 0

and the initial conditions x(t) = ϕ(t), x′(t) = ψ(t), t ∈ [−τ, 0]. Here and for the remainder of the
paper we will be assuming that the initial functions ϕ and ψ are continuous random processes.
Under those assumptions the solution to the corresponding initial value problem for equation (1)
exists and is unique for all t ≥ 0, up to its stochastic equivalent solution on the space (Ω, F, P )
[20]

We shall make use of the following norms for solutions of equation (1)

||x(t)||τ := max
−τ≤s≤0

{|x(t + s)|}, ||x(t)||2τ,β :=

0∫

−τ

eβs x2(t + s) ds. (2)

As it is well known, the zero solution of equation (1) is called stable in the square mean
if for every ε > 0 there exists δ(ε) > 0 such that every solution x of equation (1) satisfies
M{|x(t)|2} < ε provided the initial conditions x(s) ≡ ϕ(s), x′(s) ≡ ψ(s), s ∈ [−τ, 0] are such
that max−τ≤s≤0 |ϕ(s)| < δ and max−τ≤s≤0 |ψ(s)| < δ. If the zero solution is stable in the square
mean and limt→+∞M{|x(t)|2} = 0 then it is called asymptotically stable in the square mean.
If there exist positive constants N and γ such that the inequality holds

M{||x(t)||2τ,β} < N ||x(0)||2τ e−γt,

then the zero solution is called exponentially (γ, β)-integrally stable in the square mean.
In this paper we derive constructive estimates of the exponential (γ, β)-integrable stability

in the square mean of the differential-difference equation with constant delay (1). We employ
the method of stochastic Lyapunov-Krasovskii functionals. In the papers [13, 14, 19, 20] the
functional is chosen to be of the form

V [x(t), t] = h[x(t)− cx(t− τ)]2 + g

0∫

−τ

x2(t + s) ds
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where constants h > 0 and g > 0 are such that the total stochastic differential of the functional
along solutions is negative definite. In the present paper we add exponential factors to the
functional so that it has the following form

V [x(t), t] = eγt



h[x(t)− cx(t− τ)]2 + g

0∫

−τ

eβsx2(t + s) ds



 ,

where constants h > 0, g > 0, γ > 0, β > 0 are to be determined later. This allows us not only
to derive sufficient conditions for the stability of the zero solution but also obtain coefficient
estimates on the rate of the exponential decay of solutions. Since the functional is homogeneous
in both h and g we can set h = 1. By changing variables in the integral by t + s = ξ we obtain

V [x(t), t] = eγt



h[x(t)− cx(t− τ)]2 + g

t∫

t−τ

e−β(t−ξ)x2(ξ) dξ



 . (3)

By using the earlier introduced norms (2) the functional (3) allows for the following two-sided
estimates

geγtM{||x(t)||2τ,β} ≤ M{V [x(t), t]} ≤ eγt(1 + c2)× (4)

×M{[x2(t) + x2(t− τ)]}+ geγtM{||x(t)||2τ,β}.

Introduce the following notations

A := −2a0 − b2
0, B := −a1 + a0c− b0b1, C := 2a1c− b2

1, (5)

S = S(g, β, γ) :=
[
A− γ − g B + γc

B + γc ge−βτ − γc2 + C,

]
(6)

and let λmin = λmin(S(g, β, γ)) be the smallest eigenvalue of the matrix S = S(g, β, γ).
The following result establishes the stability and the rate of growth of the solutions of equation

(1) as t → +∞.

Theorem 2.1. Suppose there exist positive constants β, γ, g with β > γ such that the following
inequalities are satisfied

∆1 = A− γ − g > 0, (7)

∆2 = (A− γ − g)(g e−βτ − γc2 + C)− (B + γc)2 > 0,

where constants A, B, and C are defined by (5). Then the zero solution of equation (1) is
exponentially (γ, β)-integral stable in the square mean. Moreover, every solution x(t) satisfies
the following convergence estimate for all t ≥ 0

M
{||x(t)||2τ,β

} ≤
[√

1 + c2

g
(|x(0)|+ |x(−τ)|+ ||x(0)||τ,β)

]
e−θ(β,γ)t, (8)

where θ is defined by

θ = θ(g, β, γ) = min
{

β,
λmin(S)
1 + c2

+ γ

}
. (9)
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Proof. In order to arrive at conditions (7) and the rate of solutions’ decay (8) we shall apply the
method of Lyapunov-Krasovskii functionals to the one given by formula (3). By using the Ito
formula we evaluate the stochastic differential of functional (3) as follows

d V [x(t), t] = γeγt



[x(t)− cx(t− τ)]2 + g

t∫

t−τ

e−β(t−s)x2(s) ds



 dt +

+eγt {2[x(t)− cx(t− τ)]d [x(t)− cx(t− τ)]+ g[b0x(t) + b1x(t− τ)]2 (dw)2 +

+ g


x2(t)− e−βτx2(t− τ)− β

t∫

t−τ

e−β(t−s)x2(s) ds


 dt



 .

By taking the mathematical expectation we obtain

M
d

dt
{V [x(t), t]} = eγtM{γ[x(t)− cx(t− τ)]2 + 2[x(t)− cx(t− τ)]×

×[a0x(t) + a1x(t− τ)] + [b0x(t) + b1x(t− τ)]2 +

+gx2(t)− ge−βγx2(t− τ)− g(β − γ)

t∫

t−τ

e−β(t−s)x2(s) ds}.

By using notations (5) and (6) the last expression can be rewritten in the following vector-matrix
form

d

dt
M {V [x(t), t]} = −e−γtM {(x(t), x(t− τ))× S(g, β, γ)×

×
(

x(t)
x(t− τ)

)}
− g(β − γ)eγtM





t∫

t−τ

e−β(t−s)x2(s) ds



 .

With the notations (5) and (6) and according to the Silvester criterion [20] assumptions (7)
imply that matrix S is positive definite. Assume now (7) to hold. Then the smaller eigenvalue
of matrix S is positive, that is

λmin(S) =
1
2

[
σ −

√
σ2 − 4∆2

]
> 0,

σ = A + C − γ(1 + c2) + g(e−βτ − 1),

and the full derivative of the mathematical expectation of the Lyapunov functional is negative
definite. The zero solution of equation (1) is then asymptotically stable.

We shall show next that solutions of equation (1) decay exponentially by calculating the
corresponding exponential rate. Choose the constants β and γ to satisfy β − γ > 0. Then
the full derivative of the mathematical expectation for the Lyapuvov functional satisfies the
inequality

d

dt
M{V [x(t), t]} ≤ −eγtλminM{[x2(t) + x2(t− τ)]} − (10)

− g(β − γ)eγtM{||x(t)||2τ,β}.
Let us derive conditions that are necessary to impose on the coefficients of equation (1) and

parameters of the Lyapunov-Krasovskii functional (3) in order for the following inequality to
hold

d

dt
M{V [x(t), t]} ≤ −ζM{V [x(t), t]}, for some ζ > 0.

We use a sequence of the following calculations.
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(1) Rewrite the right hand side of inequality (4) in the form

−eγtM{||x(t)||2τ,β} ≤ −1
g
M{V [x(t), t]}+ eγt 1 + c2

g
M{[x2(t) + x2(t− τ)]}

and substitute the latter into inequality (10). This results in
d

dt
M{V [x(t), t]} ≤ −eγtλminM{[x2(t) + x2(t− τ)]}+

+g(β − γ)
{
−1

g
M{V [x(t), t]}+ eγt 1 + c2

g
M{[x2(t) + x2(t− τ)]}

}
.

Or equivalently as
d

dt
M{V [x(t), t]} ≤ −(β − γ)M{V [x(t), t]} − eγt {λmin(S)−

− (β − γ)(1 + c2)
}

M{[x2(t) + x2(t− τ)]}.
If the equation’s coefficients and the functional’s parameters are such that λmin(S) > (β − γ)
(1 + c2) then the following holds

d

dt
M{V [x(t), t]} ≤ −ζM{V [x(t), t]}, where ζ = β − γ. (11)

(2) Rewrite the right hand side of inequality (4) in the form

−eγtM{[x2(t) + x2(t− τ)]} ≤ − 1
1 + c2

M{V [x(t), t]}+

+ eγt g

1 + c2
M{||x(t)||2τ,β}

and substitute the latter again into inequality (10). This results in

d

dt
M{V [x(t), t]} ≤ λmin(S)

{
− 1

1 + c2
M{V [x(t), t]}+ eγt ×

× g

1 + c2
M{||x(t)||2τ,β} − eγtg(β − γ)M{||x(t)||2τ,β}

}
.

Or, equivalently, in the inequality
d

dt
M{V [x(t), t]} ≤ −λmin(S)

1 + c2
V [x(t), t]−

− eγtg

{
(β − γ)− λmin(S)

1 + c2

}
||x(t)||2τ,β .

If the parameter involved are such that the inequality

(β − γ) >
λmin(S[g, β, γ])

1 + c2

holds then we deduce
d

dt
M{V [x(t), t]} ≤ −ζM{V [x(t), t]}, where ζ =

λmin(S)
1 + c2

. (12)

By simultaneously solving both differential inequalities (11) and (12) we see that

M{V [x(t), t]} ≤ V [x(0), 0] e−ζt, with ζ = min{β − γ,
λmin(S)
1 + c2

}.
By integrating the two-sided inequality (4) for the Liapunov-Krasovskii functional V we obtain

eγtgM{||x(t)||2τ,β} ≤ M{V [x(t), t]} ≤ V [x(0), 0] e−ζt ≤
≤ {

(1 + c2)[x2(0) + x2(τ)] + g||x(0)||2τ,β

}
e−ζt, t ≥ 0.
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This results in the final estimate for the rate of decay of solutions given by the following inequality

M{||x(t)||2τ,β} ≤
[√

1 + c2

g
(|x(0)|+ |x(−τ)|) + ||x(0)||τ,β

]
×

× e−θ(g,β,γ) t, t ≥ 0,

where θ(g, β, γ) = ζ + γ is given by formula (9). ¤

Suppose that constants g, β, γ are such that the assumptions (7) are satisfied with the cor-
responding rate (8) of decay of solutions taking place. In the stability situation one now has a
flexibility to choose the parameters g, β, γ. Consider here a choice for the parameters which can
be viewed in a sense as the best one.

According to the Silvester criterion the inequalities (7) are sufficient for matrix S to be
positive definite. We will seek for the value of parameter g which maximizes the value of of
the determinant ∆2. This can be viewed as the best case for the positive definiteness of matrix
S[g, β, γ] since its minimal positive eigenvalue is then the largest possible one.

A necessary condition for ∆2 to have a local extreme value in g is

d∆2

dg
=

d

dg

{
(A− γ − g)(ge−βτ − γc2 + C)− (B + γc2)2

}
=

= −2ge−βτ + [(A− γ)e−βτ + (γc2 − C)] = 0.

This implies that the corresponding value of g is given by

g0 =
1
2

[
(A− γ) + eβτ (γc2 − C)

]
.

Accordingly, the corresponding matrix S[g, β, γ] has the form

S =
[

1
2

[
(A− γ) + eβτ (γc2 − C)

]
B + γc

B + γc 1
2

[
(A− γ) + eβτ (γc2 − C)

]
]

.

The quantities σ and ∆2 are given by

σ =
1
2
(1 + e−βτ )

[
(A− γ)− eβτ (γc2 − C)

]
,

∆2 =
1
4
e−βτ

[
(A− γ)− eβτ (γc2 − C)

]2
− (B + γc)2.

This implies that the smaller solution of the characteristic equation

λ2 − σλ + ∆2 = 0

is given by

λmin = λmin(S[g0, β, γ]) =
1
2

[
σ −

√
σ2 − 4∆2

]
=

=
1
4

{
(1 + e−βτ )

[
(A− γ)− eβτ (γc2 − C)

]
−

−
√

(1− e−βτ )2 [(A− γ)− eβτ (γc2 − C)]2 + 16(B + γc)2
}

.

Therefore, the above calculation establishes the following result.

Theorem 2.2. Suppose there exist constants β > γ > 0 such that the following inequality is
satisfied

A− γ − eβτ (γc2 − C) > 2e
1
2
βτ |B + γc|,
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where constants A, B, and C are defined by (5). Then the zero solution of equation (1) is
asymptotically stable in the square mean. Moreover, every solution x(t) satisfies the following
convergence estimate for all t ≥ 0

M
{||x(t)||2τ,β

} ≤
[√

1 + c2

g
(|x(0)|+ |x(−τ)|) + ||x(0)||τ,β

]
e−θ(β,γ)t,

where θ(β, γ) and λmin are given by

θ(β, γ) = min
{

β,
λmin

1 + c2
+ γ

}
,

λmin =
1
4

{
(1 + e−βτ )[(A− γ)− eβτ (γc2 − C)]−

−
√

(1 + e−βτ )2[(A− γ)− eβτ (γc2 − C)]2 + 16(B + γc)2
}

.
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